Statical Moment of the Area

for a rectangular section

\[dQ = y \cdot dA = y \cdot b \, dy \]

the change of \(Q \) is referenced below or above the neutral axis (N.A.)

The integral of \(dQ \) develops the shear stress and the largest \(Q \) develops from the N.A. to the extreme fiber. (The shear stress approaches zero at the extreme fiber.)

1) Integrate the \(Q \) from the N.A to the extreme fiber then, 2) subtract the second integrated \(Q \) from the N.A. to the particular \(y \) layer at which you wish to find the shear stress. This is the net \(Q \).

1) \(\int dQ = \int y \, b \, dy = b \, y^2 /2 \)

Note: the \(Q(y) \) is a quadratic relationship.

\[\text{max } Q = b \, d^2 /8 \]

2) \(\int dQ = \int y \, b \, dy = b \, y^2 /2 \)

for example \(y = d/4 \) (midpoint below N.A.)

mid-point \(Q = b \, d^2 /32 \)

then \(\tau \) at \(y=d/4 \) is

\[\tau = V \cdot Q(d/2) - Q(d/4) / I \, b = V \cdot b \, d^2 /8 - b \, d^2 /32 / 1/12 \, b \, d^3 \cdot b \]

= \[V \cdot 3/32 \, b \, d^2 / 1/12 \, b \, d^3 \cdot b \]

= \[V \cdot 36/32 / b d \]

= \[9/8 \, V / b \]

What is the shear stress at \(y=0 \) (at the N.A.)? Substitute into expression for horizontal shear stress to determine max shear stress:

\[\text{max } \tau = V \, Q / I \, b = V \, b d^2 /8 / 1/12 \, b \, d^3 \cdot b \]

\[\text{max } \tau = V \, 1/8 / 1/12 \, b \, d = V \, 12 / 8 \cdot b \, d = 3/2 \, V/A \]

You can check these results for the rectangular section by evaluating:

\[\tau(y) = V \, [b \, d^2 /8 - b \, y^2 /2] / 1/12 \, b \, d^3 \cdot b \]

Generally, \(\tau(y) = V \cdot \text{net } Q(y) / I \cdot b(y) \) and the \(\text{max } \tau \) is where we maximize the numerator and minimize the denominator.